Finding Hope in Regeneration: Subjective Experiences of Patients Undergoing Tissue Engineering Therapy for Severe Injury Recovery
Main Article Content
Abstract
Tissue engineering and regenerative medicine have revolutionized medical treatment by offering innovative solutions for patients with severe tissue damage. While prior research has primarily focused on the physiological outcomes of regenerative therapies, limited attention has been given to the subjective experiences of patients undergoing these treatments. The lack of qualitative studies on patient perspectives creates a gap in understanding how individuals emotionally and psychologically navigate their healing journey. This study employs a phenomenological approach to explore the lived experiences of patients undergoing regenerative therapy, capturing their hopes, uncertainties, and adaptation strategies. Semi-structured interviews with patients revealed key themes, including the ambivalence between hope and uncertainty, the role of psychosocial support, fluctuating emotional responses to healing, and perceived empowerment through medical advancements. These findings underscore the importance of holistic, patient-centered approaches in regenerative medicine that integrate psychological and social support alongside clinical care. Future research should further explore cultural influences on patient experiences and develop long-term support mechanisms to enhance patient well-being beyond physiological recovery.
Article Details
References
Agostinacchio, F., Biada, E., Gambari, L., Grassi, F., Bucciarelli, A., & Motta, A. (2024). Surfactant-assisted photo-crosslinked silk fibroin sponges: A versatile platform for the design of bone scaffolds. Biomaterials Advances, 161. Scopus. https://doi.org/10.1016/j.bioadv.2024.213887
Bojedla, S. S. R., Yeleswarapu, S., Alwala, A. M., Nikzad, M., Masood, S. H., Riza, S., & Pati, F. (2022). Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy. ACS Applied Bio Materials, 5(9), 4465–4479. Scopus. https://doi.org/10.1021/acsabm.2c00560
Cassotta, M., Pistollato, F., & Battino, M. (2020). Rheumatoid arthritis research in the 21st century: Limitations of traditional models, new technologies, and opportunities for a human biology-based approach. Altex, 37(2), 223–242. Scopus. https://doi.org/10.14573/altex.1910011
Gangrade, A., Zehtabi, F., Rashad, A., Haghniaz, R., Falcone, N., Mandal, K., Khosravi, S., Deka, S., Yamauchi, A., Voskanian, L., Kim, H.-J., Ermis, M., Khademhosseini, A., & de Barros, N. R. (2024). Nanobioactive blood-derived shear-thinning biomaterial for tissue engineering applications. Applied Materials Today, 38. Scopus. https://doi.org/10.1016/j.apmt.2024.102250
Ghollasi, M., & Poormoghadam, D. (2022). Enhanced neural differentiation of human-induced pluripotent stem cells on aligned laminin-functionalized polyethersulfone nanofibers; a comparison between aligned and random fibers on neurogenesis. Journal of Biomedical Materials Research - Part A, 110(3), 672–683. Scopus. https://doi.org/10.1002/jbm.a.37320
Iacobazzi, D., Rapetto, F., Albertario, A., Swim, M. M., Narayan, S., Skeffington, K., Salih, T., Alvino, V. V., Madeddu, P., Ghorbel, M. T., & Caputo, M. (2021). Wharton’s jelly-mesenchymal stem cell-engineered conduit for pediatric translation in heart defect. Tissue Engineering - Part A, 27(3–4), 201–213. Scopus. https://doi.org/10.1089/ten.tea.2020.0088
Koch, P. J., & Koster, M. I. (2021). Rare Genetic Disorders: Novel Treatment Strategies and Insights Into Human Biology. Frontiers in Genetics, 12. Scopus. https://doi.org/10.3389/fgene.2021.714764
Launer-Wachs, S., Taub-Tabib, H., Madem, J. T., Bar-Natan, O., Goldberg, Y., & Shamay, Y. (2023). From centralized to ad-hoc knowledge base construction for hypotheses generation. Journal of Biomedical Informatics, 142. Scopus. https://doi.org/10.1016/j.jbi.2023.104383
Maas, R. G. C., Beekink, T., Chirico, N., Snijders Blok, C. J. B., Dokter, I., Sampaio-Pinto, V., van Mil, A., Doevendans, P. A., Buikema, J. W., Sluijter, J. P. G., & Stillitano, F. (2023). Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Journal of Visualized Experiments, 2023(193). Scopus. https://doi.org/10.3791/64365
Mahajan, N., Soker, S., & Murphy, S. V. (2024). Regenerative Medicine Approaches for Skin Wound Healing: From Allografts to Engineered Skin Substitutes. Current Transplantation Reports, 11(4), 207–221. Scopus. https://doi.org/10.1007/s40472-024-00453-5
Maier, M. A., dos Santos Adrego, F., Jung, S. A., Boos, A. M., & Pich, A. (2024). Mechano-Triggered Release of Biomolecules from Supramolecular Hyaluronic Acid Hydrogels. ACS Applied Polymer Materials, 6(22), 13841–13854. Scopus. https://doi.org/10.1021/acsapm.4c02778
Mishchenko, T. A., Klimenko, M. O., Kuznetsova, A. I., Yarkov, R. S., Savelyev, A. G., Sochilina, A. V., Mariyanats, A. O., Popov, V. K., Khaydukov, E. V., Zvyagin, A. V., & Vedunova, M. V. (2022). 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction. Frontiers in Bioengineering and Biotechnology, 10. Scopus. https://doi.org/10.3389/fbioe.2022.895406
Pashchenko, A., Stuchlíková, S., Varvařovská, L., Firment, P., Staňková, L., Nečasová, A., Filipejová, Z., Urbanová, L., Jarošíková, T., Nečas, A., & Amler, E. (2022). Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery system. Acta Veterinaria Brno, 91(2), 163–170. Scopus. https://doi.org/10.2754/avb202291020163
Patil, R. R., Patil, A. S., Chougule, K., Patil, A. S., Ugare, P., & Masareddy, R. S. (2024). Exploring the Transformative Potential of In Situ Gels: An Overview of Thermosensitive and pH-Sensitive Gel Systems for Biomedical Applications. Macromolecular Symposia, 413(2). Scopus. https://doi.org/10.1002/masy.202300153
Petretta, M., Villata, S., Scozzaro, M. P., Roseti, L., Favero, M., Napione, L., Frascella, F., Pirri, C. F., Grigolo, B., & Olivotto, E. (2023). In Vitro Synovial Membrane 3D Model Developed by Volumetric Extrusion Bioprinting. Applied Sciences (Switzerland), 13(3). Scopus. https://doi.org/10.3390/app13031889
Shafiee, A. (2020). Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine. Tissue Engineering - Part A, 26(5–6), 305–317. Scopus. https://doi.org/10.1089/ten.tea.2019.0278
Susapto, H. H., Alhattab, D., Abdelrahman, S., Khan, Z., Alshehri, S., Kahin, K., Ge, R., Moretti, M., Emwas, A.-H., & Hauser, C. A. E. (2021). Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs. Nano Letters, 21(7), 2719–2729. Scopus. https://doi.org/10.1021/acs.nanolett.0c04426